Copied to
clipboard

G = C3×C423C4order 192 = 26·3

Direct product of C3 and C423C4

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C3×C423C4, C425C12, (C4×C12)⋊6C4, (C6×Q8)⋊4C4, (C2×Q8)⋊3C12, C23⋊C4.2C6, (C22×C6).4D4, C23.4(C3×D4), C4.4D4.2C6, C6.35(C23⋊C4), (C6×D4).177C22, (C2×C4).2(C2×C12), (C2×D4).4(C2×C6), C2.9(C3×C23⋊C4), (C2×C12).13(C2×C4), (C3×C23⋊C4).4C2, (C2×C6).76(C22⋊C4), (C3×C4.4D4).11C2, C22.13(C3×C22⋊C4), SmallGroup(192,160)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C3×C423C4
C1C2C22C23C2×D4C6×D4C3×C23⋊C4 — C3×C423C4
C1C2C22C2×C4 — C3×C423C4
C1C6C2×C6C6×D4 — C3×C423C4

Generators and relations for C3×C423C4
 G = < a,b,c,d | a3=b4=c4=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c-1, dcd-1=b2c-1 >

Subgroups: 178 in 70 conjugacy classes, 26 normal (18 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C12, C2×C6, C2×C6, C42, C22⋊C4, C2×D4, C2×Q8, C2×C12, C2×C12, C3×D4, C3×Q8, C22×C6, C23⋊C4, C4.4D4, C4×C12, C3×C22⋊C4, C6×D4, C6×Q8, C423C4, C3×C23⋊C4, C3×C4.4D4, C3×C423C4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, C2×C12, C3×D4, C23⋊C4, C3×C22⋊C4, C423C4, C3×C23⋊C4, C3×C423C4

Smallest permutation representation of C3×C423C4
On 48 points
Generators in S48
(1 15 11)(2 16 12)(3 13 9)(4 14 10)(5 34 26)(6 35 27)(7 36 28)(8 33 25)(17 21 32)(18 22 29)(19 23 30)(20 24 31)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 39 23 6)(2 40 24 7)(3 37 21 8)(4 38 22 5)(9 41 17 25)(10 42 18 26)(11 43 19 27)(12 44 20 28)(13 45 32 33)(14 46 29 34)(15 47 30 35)(16 48 31 36)
(1 5 6 24)(2 23 38 39)(3 40 8 4)(7 37 22 21)(9 44 25 10)(11 26 27 20)(12 19 42 43)(13 48 33 14)(15 34 35 31)(16 30 46 47)(17 28 41 18)(29 32 36 45)

G:=sub<Sym(48)| (1,15,11)(2,16,12)(3,13,9)(4,14,10)(5,34,26)(6,35,27)(7,36,28)(8,33,25)(17,21,32)(18,22,29)(19,23,30)(20,24,31)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,39,23,6)(2,40,24,7)(3,37,21,8)(4,38,22,5)(9,41,17,25)(10,42,18,26)(11,43,19,27)(12,44,20,28)(13,45,32,33)(14,46,29,34)(15,47,30,35)(16,48,31,36), (1,5,6,24)(2,23,38,39)(3,40,8,4)(7,37,22,21)(9,44,25,10)(11,26,27,20)(12,19,42,43)(13,48,33,14)(15,34,35,31)(16,30,46,47)(17,28,41,18)(29,32,36,45)>;

G:=Group( (1,15,11)(2,16,12)(3,13,9)(4,14,10)(5,34,26)(6,35,27)(7,36,28)(8,33,25)(17,21,32)(18,22,29)(19,23,30)(20,24,31)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,39,23,6)(2,40,24,7)(3,37,21,8)(4,38,22,5)(9,41,17,25)(10,42,18,26)(11,43,19,27)(12,44,20,28)(13,45,32,33)(14,46,29,34)(15,47,30,35)(16,48,31,36), (1,5,6,24)(2,23,38,39)(3,40,8,4)(7,37,22,21)(9,44,25,10)(11,26,27,20)(12,19,42,43)(13,48,33,14)(15,34,35,31)(16,30,46,47)(17,28,41,18)(29,32,36,45) );

G=PermutationGroup([[(1,15,11),(2,16,12),(3,13,9),(4,14,10),(5,34,26),(6,35,27),(7,36,28),(8,33,25),(17,21,32),(18,22,29),(19,23,30),(20,24,31),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,39,23,6),(2,40,24,7),(3,37,21,8),(4,38,22,5),(9,41,17,25),(10,42,18,26),(11,43,19,27),(12,44,20,28),(13,45,32,33),(14,46,29,34),(15,47,30,35),(16,48,31,36)], [(1,5,6,24),(2,23,38,39),(3,40,8,4),(7,37,22,21),(9,44,25,10),(11,26,27,20),(12,19,42,43),(13,48,33,14),(15,34,35,31),(16,30,46,47),(17,28,41,18),(29,32,36,45)]])

39 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D···4H6A6B6C6D6E6F6G6H12A···12F12G···12P
order12222334444···46666666612···1212···12
size11244114448···8112244444···48···8

39 irreducible representations

dim1111111111224444
type+++++
imageC1C2C2C3C4C4C6C6C12C12D4C3×D4C23⋊C4C423C4C3×C23⋊C4C3×C423C4
kernelC3×C423C4C3×C23⋊C4C3×C4.4D4C423C4C4×C12C6×Q8C23⋊C4C4.4D4C42C2×Q8C22×C6C23C6C3C2C1
# reps1212224244241224

Matrix representation of C3×C423C4 in GL6(𝔽13)

900000
090000
001000
000100
000010
000001
,
0120000
1200000
004944
009444
009949
009994
,
1200000
0120000
000010
000001
0012000
0001200
,
050000
800000
004999
004944
009949
004449

G:=sub<GL(6,GF(13))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,4,9,9,9,0,0,9,4,9,9,0,0,4,4,4,9,0,0,4,4,9,4],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,1,0,0,0,0,0,0,1,0,0],[0,8,0,0,0,0,5,0,0,0,0,0,0,0,4,4,9,4,0,0,9,9,9,4,0,0,9,4,4,4,0,0,9,4,9,9] >;

C3×C423C4 in GAP, Magma, Sage, TeX

C_3\times C_4^2\rtimes_3C_4
% in TeX

G:=Group("C3xC4^2:3C4");
// GroupNames label

G:=SmallGroup(192,160);
// by ID

G=gap.SmallGroup(192,160);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,680,1683,1522,248,2951,375,6053]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^4=c^4=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
×
𝔽