Copied to
clipboard

G = C3xC42:3C4order 192 = 26·3

Direct product of C3 and C42:3C4

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C3xC42:3C4, C42:5C12, (C4xC12):6C4, (C6xQ8):4C4, (C2xQ8):3C12, C23:C4.2C6, (C22xC6).4D4, C23.4(C3xD4), C4.4D4.2C6, C6.35(C23:C4), (C6xD4).177C22, (C2xC4).2(C2xC12), (C2xD4).4(C2xC6), C2.9(C3xC23:C4), (C2xC12).13(C2xC4), (C3xC23:C4).4C2, (C2xC6).76(C22:C4), (C3xC4.4D4).11C2, C22.13(C3xC22:C4), SmallGroup(192,160)

Series: Derived Chief Lower central Upper central

C1C2xC4 — C3xC42:3C4
C1C2C22C23C2xD4C6xD4C3xC23:C4 — C3xC42:3C4
C1C2C22C2xC4 — C3xC42:3C4
C1C6C2xC6C6xD4 — C3xC42:3C4

Generators and relations for C3xC42:3C4
 G = < a,b,c,d | a3=b4=c4=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c-1, dcd-1=b2c-1 >

Subgroups: 178 in 70 conjugacy classes, 26 normal (18 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C2xC4, C2xC4, D4, Q8, C23, C12, C2xC6, C2xC6, C42, C22:C4, C2xD4, C2xQ8, C2xC12, C2xC12, C3xD4, C3xQ8, C22xC6, C23:C4, C4.4D4, C4xC12, C3xC22:C4, C6xD4, C6xQ8, C42:3C4, C3xC23:C4, C3xC4.4D4, C3xC42:3C4
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, D4, C12, C2xC6, C22:C4, C2xC12, C3xD4, C23:C4, C3xC22:C4, C42:3C4, C3xC23:C4, C3xC42:3C4

Smallest permutation representation of C3xC42:3C4
On 48 points
Generators in S48
(1 15 11)(2 16 12)(3 13 9)(4 14 10)(5 34 26)(6 35 27)(7 36 28)(8 33 25)(17 21 32)(18 22 29)(19 23 30)(20 24 31)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 39 23 6)(2 40 24 7)(3 37 21 8)(4 38 22 5)(9 41 17 25)(10 42 18 26)(11 43 19 27)(12 44 20 28)(13 45 32 33)(14 46 29 34)(15 47 30 35)(16 48 31 36)
(1 5 6 24)(2 23 38 39)(3 40 8 4)(7 37 22 21)(9 44 25 10)(11 26 27 20)(12 19 42 43)(13 48 33 14)(15 34 35 31)(16 30 46 47)(17 28 41 18)(29 32 36 45)

G:=sub<Sym(48)| (1,15,11)(2,16,12)(3,13,9)(4,14,10)(5,34,26)(6,35,27)(7,36,28)(8,33,25)(17,21,32)(18,22,29)(19,23,30)(20,24,31)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,39,23,6)(2,40,24,7)(3,37,21,8)(4,38,22,5)(9,41,17,25)(10,42,18,26)(11,43,19,27)(12,44,20,28)(13,45,32,33)(14,46,29,34)(15,47,30,35)(16,48,31,36), (1,5,6,24)(2,23,38,39)(3,40,8,4)(7,37,22,21)(9,44,25,10)(11,26,27,20)(12,19,42,43)(13,48,33,14)(15,34,35,31)(16,30,46,47)(17,28,41,18)(29,32,36,45)>;

G:=Group( (1,15,11)(2,16,12)(3,13,9)(4,14,10)(5,34,26)(6,35,27)(7,36,28)(8,33,25)(17,21,32)(18,22,29)(19,23,30)(20,24,31)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,39,23,6)(2,40,24,7)(3,37,21,8)(4,38,22,5)(9,41,17,25)(10,42,18,26)(11,43,19,27)(12,44,20,28)(13,45,32,33)(14,46,29,34)(15,47,30,35)(16,48,31,36), (1,5,6,24)(2,23,38,39)(3,40,8,4)(7,37,22,21)(9,44,25,10)(11,26,27,20)(12,19,42,43)(13,48,33,14)(15,34,35,31)(16,30,46,47)(17,28,41,18)(29,32,36,45) );

G=PermutationGroup([[(1,15,11),(2,16,12),(3,13,9),(4,14,10),(5,34,26),(6,35,27),(7,36,28),(8,33,25),(17,21,32),(18,22,29),(19,23,30),(20,24,31),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,39,23,6),(2,40,24,7),(3,37,21,8),(4,38,22,5),(9,41,17,25),(10,42,18,26),(11,43,19,27),(12,44,20,28),(13,45,32,33),(14,46,29,34),(15,47,30,35),(16,48,31,36)], [(1,5,6,24),(2,23,38,39),(3,40,8,4),(7,37,22,21),(9,44,25,10),(11,26,27,20),(12,19,42,43),(13,48,33,14),(15,34,35,31),(16,30,46,47),(17,28,41,18),(29,32,36,45)]])

39 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D···4H6A6B6C6D6E6F6G6H12A···12F12G···12P
order12222334444···46666666612···1212···12
size11244114448···8112244444···48···8

39 irreducible representations

dim1111111111224444
type+++++
imageC1C2C2C3C4C4C6C6C12C12D4C3xD4C23:C4C42:3C4C3xC23:C4C3xC42:3C4
kernelC3xC42:3C4C3xC23:C4C3xC4.4D4C42:3C4C4xC12C6xQ8C23:C4C4.4D4C42C2xQ8C22xC6C23C6C3C2C1
# reps1212224244241224

Matrix representation of C3xC42:3C4 in GL6(F13)

900000
090000
001000
000100
000010
000001
,
0120000
1200000
004944
009444
009949
009994
,
1200000
0120000
000010
000001
0012000
0001200
,
050000
800000
004999
004944
009949
004449

G:=sub<GL(6,GF(13))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,4,9,9,9,0,0,9,4,9,9,0,0,4,4,4,9,0,0,4,4,9,4],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,1,0,0,0,0,0,0,1,0,0],[0,8,0,0,0,0,5,0,0,0,0,0,0,0,4,4,9,4,0,0,9,9,9,4,0,0,9,4,4,4,0,0,9,4,9,9] >;

C3xC42:3C4 in GAP, Magma, Sage, TeX

C_3\times C_4^2\rtimes_3C_4
% in TeX

G:=Group("C3xC4^2:3C4");
// GroupNames label

G:=SmallGroup(192,160);
// by ID

G=gap.SmallGroup(192,160);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,680,1683,1522,248,2951,375,6053]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^4=c^4=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<